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1. Executive Summary 

Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity 
at a central ground location by converting their respective energies into high-pressure 
hydraulic flows that are transmitted to a system of hydraulic generators by high-pressure 
pipelines. The high-pressure flows are then efficiently converted to electricity by a central 
hydraulic power plant, and the low-pressure outlet flow is returned. All gears and submerged 
electronics are completely eliminated (JPL/Caltech patents granted and pending). The 
Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to 
demonstrate a 15 kW tidal hydraulic power generation system in the laboratory. Sunlight 
Photonics will issue a separate report on this experimental phase, which has successfully 
integrated and demonstrated all major hardware components. 

Another portion of this DOE project involves sizing and costing a 15 MW commercial tidal 
energy plant, which is the subject of this Final Report. For this task, Atlantis Resources 
Corporation’s demonstrated 18-m diameter tidal blades operate in a nominal 2.6 m/sec tidal 
flow to produce one MW per set of tidal blades. Fifteen blade units are submerged in a deep 
tidal area, such as Maine’s Western Passage. Each set of blades is attached to commercial-
off-the-shelf (COTS) Hagglund radial piston pumps, and all pumps are connected to a high-
pressure (20 MPa, 2900 psi) line that is 35 cm ID. High-pressure HEPG fluid is transported 
500 meters to a parallel series of onshore, COTS axial piston hydraulic generators. HEPG is 
an environmentally-friendly, biodegradable, water-miscible fluid. The total cost of producing 
energy with this tidal power plant is estimated to be $0.15/kW-hr, which is between the cost 
of wind energy and solar energy.  

Hydraulic adaptations to Ocean Renewable Power Company’s (ORPC’s) cross-flow tidal 
turbines are also discussed. Costs to convert a submerged ORPC tidal system to a hydraulic 
device with onshore power generation are about 50 cents per watt, minus the cost of ORPC’s 
expensive submerged generators, which would be entirely removed. 

Although not originally planned, applications of Hydraulic Energy Transfer (HET) for wind 
energy have also been added to this report. For wind energy that is onshore or offshore, a 
gearless, high-efficiency, COTS, radial piston pump can replace each set of troublesome, top-
mounted gear-generators for conventional wind turbine systems.  Environmentally friendly 
HEPG fluid is then pumped to a central system of easily serviceable ground generators, 
which consist of a parallel series of axial piston hydraulic generators. Total 
hydraulic/electrical efficiency of 81% is close to that of conventional wind turbines at full-
rated wind speeds. Total HET efficiencies increase at slower speeds, however, while 
conventional wind turbine efficiencies decrease significantly. In addition, all troublesome 
gears are eliminated for HET wind and tidal energy systems. 

 



2 

2. Introduction: State of the Art for Tidal and  
Wind Energy 

There are numerous ways to obtain non-carbon-emitting, renewable electrical power. One of 
the objectives of this paper is to briefly review some of the state-of-the-art for tidal energy 
and wind energy systems. A new hydraulic energy transfer (HET) design will be discussed 
that allows centralized, ground-based power generation for onshore and offshore wind 
energy, as well as for tidal and river current energy.  

2.1 Tidal Energy 

There are many different types of tidal power technologies. A partial list of categories 
includes the following (Reference 1). 

Barrage or dam:  A barrage or dam is typically used to convert tidal energy into electricity 
by forcing the water through turbines, activating a generator. Gates and turbines are installed 
along the dam. When the tides produce adequate difference in the level of water on opposite 
sides of the dam, the gates are opened. The water then flows through the turbines. The 
turbines turn an electric generator to produce electricity. Small power plants using this 
technology are now functioning in France, Russia, and Canada. The dams have been 
criticized, however, for resulting in the accumulation of silt and other material behind the 
dams.  

Tidal Fence:  Tidal fences look like giant turnstiles. They can reach across channels between 
small islands or across straits between the mainland and island. The turnstiles spin via tidal 
currents typical of coastal waters. Some of these currents are 5-8 knots and generate as much 
energy as winds of much larger velocity. Tidal fences also impede boat traffic, as well as sea 
life migration.  

Horizontal Axis Tidal Turbines:  There are many types of horizontal axis tidal turbines. 
The most common of these tidal turbines look like wind turbines. They are arrayed 
underwater in rows, as in some wind farms. The turbines functions best where coastal 
currents run at between 3.6 and 4.9 knots: In currents of that speed, a 15-m diameter tidal 
turbine can generate as much energy as a 60-m diameter wind turbine. Ideal locations for 
tidal turbine farms are close to shore in water depths of 20 to 30 meters. This type of tidal 
turbine generally does not impede sea life migration or result in slit buildup.  

The first tidal generator actually attached to a commercial grid in the United States was 
operated by Verdant Power in New York City’s East River. Verdant’s Roosevelt Island Tidal 
Energy (RITE) Project was initiated in 2002 and was operating on-grid intermittently until 
2009. The project consisted of six 35-kW horizontal axis turbines that were fully 
bidirectional and accumulated over 7000 hours of operation. A simple operational schematic 
of a horizontal blade tidal turbine system is shown in Figure 1. The tidal flow turns a blade at 
about 15 rpm, which is increased to about 1500 rpm by means of a gearbox. The higher rpm 
is then used to generate electricity by means of a submerged generator, and the energy is sent 
to shore with submerged power lines. The project was plagued by a number of problems, 
including blades breaking off and salt water leakage into the generators. Reinforced turbines 
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3. Tidal and Wind Hydraulic Energy Transfer (HET) 
Designs 

Unfortunately, none of the European hydraulic wind systems noted above in Section 1.2 have 
excelled, primarily because the pumps and/or hydraulic generators are complicated, custom 
machines, and each tower has only one ground generator. In addition, the European HET 
designs lose a potentially valuable means to increase efficiency, as described below.  

JPL/Caltech has recently patented a new means to generate power for tidal energy and wind 
energy systems (Ref 10, 13) utilizing wind or tides to power a series of off-the-shelf radial 
piston pumps (typical efficiency ~0.95), which send a bio-friendly fluid to a series of off-the-
shelf, high efficiency, axial piston hydraulic generators. As the wind speed decreases, the 
pump efficiency increases, the pressure drop decreases, and the generator performance can be 
maintained at an optimum rpm by shutting off some of the generators.  Other wind 
generators, both conventional and European hydraulic systems, suffer large losses as the 
rpms decrease. Wind energy and tidal energy can both be used to turn pumps instead of 
generators, and the pumped fluid can be transferred remotely to generate electricity. There 
are numerous advantages to using HET technology which will be explained in the following 
sections for both tidal energy and wind energy.  

3.1 Tidal Hydraulic Energy Transfer 
The conventional in-stream tidal turbine shown in Figure 1 is somewhat similar to the wind 
turbine shown in Figure 5: Turbine blades spin slowly due to the flow of a river, tidal flow, 
or ocean current. The rotor’s rotational speed is increased through a gearbox, which then 
drives a turbine generator. Each turbine’s output is then conditioned and transferred to shore 
by means of a buried electrical cable. As mentioned in Section 1.1, this submerged electrical 
design is subject to salt water corrosion of electrical components due to all-too-common 
leakage of salt-water through its rotating seals. Furthermore, the submerged cable and power 
conditioning are both expensive and dangerous, and the gears are subject to failure.  

The JPL/Caltech HET design for this type of horizontal axis in-stream tidal turbine is shown 
in Figure 7, with blades and pump rotated 90° for simplicity. For this design (Reference 1), 
turbine blades spin slowly due to water currents, like the other systems. The rotor’s rotational 
speed is transmitted directly to a commercially available, high-pressure fluid pump, without 
using any gears. The high-pressure fluid, such as environmentally friendly polyethylene 
glycol-based synthetic hydraulic fluids (HEPG), is transported in small flexible lines to a 
shared stainless steel pipe and then to an efficient, onshore hydroelectric power plant. This 
all-mechanical design is less expensive (Reference 9), more efficient, and eliminates all gears 
and all submerged electrical component corrosion. A 500-m long, 0.35-m inside diameter 
pipe at 200 bar (2900 psi) can efficiently deliver 15 MW of hydraulic power to shore.  
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Table 2.  Cost of Energy (COE) for Hydraulic Tidal Energy  
 
Component Initial Cost for 15 MW Plant ($K) 5 Yr Maintenance Cost ($K)  

Ocean Components 

18-m Blades/Rotor $800 $400  

Nacelle $2000 $1000 

Ancillary $480 $240 

Pumps 300*15= $4500 $2250 

Fluid $600 $600  

Pre-assembly $7500 $250 

Ocean Installation 800*15= 12000 600*15=  $9000 

EPA Approval $3000 --------  

Pipes $500 $250 

Subtotal $31,380 $13,990 

 

Land Components 

Generator 50*15= $750 $375 

Hyd Motors 50*15= $750 $375 

Assembly $1000 $300 

Power Conditioning $1000 $500 

Grid Connection $2000 ------  

Outdoor Gen Housing $1,000 $200  

Subtotal $6500 $1,750 

TOTAL $37,880 $15,740 

 
COE = [(DR + IWF) * ICC + LRC + O&M] / AEP 
DR = 20-year Discount Rate = 0.07 
IWF = Insurance, Warranty, and Fees = 0.01 
ICC = Initial Installed Capital Cost = $31,380 K 
LRC = Levelized Replacement Costs = 31,380/20 = $1569 K 
O&M = Levelized Operations and Maintenance Cost = (15,740/5)*0.6 = $1889 K 
AEP = Net Annual Energy Production = 15,000 KW * 0.33 * 8760 hrs * 0.95 = 41.20 MW-hrs 
(where Average Capacity Factor = 0.33 times Max Power, Availability = 0.95) 
   Thus, COE = $0.149/KW-hr = $149/MW-hr 
 
Assumptions: 
 Major service required every 5 years 
 Replacement required at 20 years 
 Atlantis Research Corp. 18-m blades with gravity-based system (15 units @ 1 MW max,  

0.33 MW aver) 
 Bosch pumps and hydraulic motors with Baldor generators 
 Sinusoidal tides with peak velocity at 5.1 knots (2.6 m/sec) 
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Table 3.  Cost of Energy (COE) for ORPC hydraulic Conversion  
 
Component Costs ($K) for 4 MW ORPC Hydraulic Conversion 

 

Hi Press Steel Pipe 75 
  (20-cm ID x 300-m) 

Low Press FRP Pipe 15 
  (30-cm ID x 300-m) 

HEPG (10,000 Gal) 200 

Hydraulic Motors 300 

Generators 200 

Radial Piston Pumps 50*24= 1200 

TOTAL $1990 K 

 
For the ORPC hydraulic design, the high-pressure stainless steel pipes would average 20 cm 
ID, and the low-pressure reinforced fiberglass pipes would average 30 cm ID, resulting in a 
total system pressure drop loss of 5%. The total amount of non-toxic, environmentally 
friendly, biodegradable polyethylene glycol (HEPG) would be about 10,000 gallons. Since it 
is fully miscible with water, if the entire quantity of glycol leaked in a single tidal flow, the 
total mixed content of glycol with seawater would be about 30 parts per billion, assuming 
complete mixing.   

4.3 Preliminary Hydraulic Transfer Wind Energy Sizing 
For onshore and offshore wind, a small 15-MW system has been sized, although much larger 
power systems can be scaled up. We have selected 1.0-MW, 60-m diameter blade sets that 
rotate at 20 rpm, for a maximum velocity wind of 12 m/sec (27 MPH). Each set of blades is 
connected to a Bosch-Rexroth/Hagglund radial piston pump (#MB2400-1950). 

For this particular example, we assume the generators are located 500 meters away from the 
wind pump units, and thus an identical 15-MW fluid transfer system as the Atlantis Resource 
Corp. hydraulic tidal system described in section 3.1. The average ID of the high-pressure 
(3000 psi or 207 bar) stainless steel pipe is 35 cm and the average ID of the low-pressure 
(150 psi or 10.3 bar) RFP pipe is 40 cm. total pressure drop is again 5% of the entire flow for 
the 500-m x 2 roundtrip length. Distances longer than 500 meters would require larger 
diameters in order to maintain the same 5% total pressure drop loss. These percentage losses 
are the same as the hydraulic tidal energy system described in Section 4.1, which operates at 
12 rpm using a different version of the Hagglund radial piston pump (Hagglund #MB2400-
2400). 
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6. Summary and Conclusions 

The reliability, maintainability, and efficiency of wind energy and tidal energy systems can 
be significantly improved by using hydraulic energy transfer designs. In both instances, all 
failure-prone gears are eliminated, and the electronics are moved to a convenient, more easily 
maintained, hydraulic power generating station. For tidal energy, all submerged electronics 
and gears are replaced by off-the-shelf, radial piston pumps, which pump environmentally 
friendly, water-miscible polyethylene glycol (HEPG) to onshore hydraulic generators. For 
wind energy, the complex, top-mounted gears and generators are replaced by off-the-shelf, 
gearless, radial piston pumps, which pump the same HEPG fluid to a central, ground-located 
series of hydraulic generators, which are much more easily maintained.   

By closing off some of the hydraulic generators during slow tidal or wind conditions, it is 
possible to maintain a nearly constant generator rpm with a high-efficiency power output that 
requires very little power conditioning. Total wind or tidal energy fractional efficiency 
actually increases from about 0.81 to about 0.86 when rated velocities decrease to 1/3, while 
conventional wind and tidal efficiencies decrease to zero at 1/3 flow speeds. Similar gearless 
hydraulic energy transfer designs can be used to harness tidal energy, ocean current energy, 
river current energy, offshore wind energy, onshore wind energy, and ocean wave energy 
(Reference 10). 

Total cost for hydraulic tidal power production has been estimated to be approximately 
$0.15/kW-hr, which is larger than wind power costs, but less than costs for solar power. 
Total costs to modify the ORPC cross-flow turbines to a hydraulic energy transfer system are 
approximately $0.50/watt. The net cost is less after the cost of the expensive multi-pole 
generators, now used in the ORPC process, is deducted from the total cost of the HET 
conversion. 
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7. Acronyms and Abbreviations 

COE  cost of energy 
COTS  commercial-off-the-shelf 
DDT  direct drive train 
DOE  Department of Energy 
EMEC  European Marine Energy Centre 
FRP   Fiberglass reinforced pipe 
HEPG  hydraulic polyethylene glycol 
HET  hydraulic energy transfer 
ID   internal diameter 
JPL   Jet Propulsion Laboratory 
NASA  National Aeronautics and Space Administration 
ORPC  Ocean Renewable Power Company 
RITE  Roosevelt Island Tidal Energy 
rpm   revolutions per minute 
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Abstract 
Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity 
at a central ground location by means of converting their respective energies into high-
pressure hydraulic flows that are transmitted to a system of generators by high-pressure 
pipelines.  The high-pressure flows are then efficiently converted to electricity by a central 
power plant, and the low-pressure outlet flow is returned.  The Department of Energy (DOE) 
is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal 
hydraulic power generation system in the laboratory and possibly later submerged in the 
ocean.  All gears and submerged electronics are completely eliminated. 
 
A second portion of this DOE project involves sizing and costing a 15 MW tidal energy 
system for a commercial tidal energy plant.  For this task, Atlantis Resources Corporation’s 
18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal 
flow to produce approximately one MW per set of tidal blades.  Fifteen units would be 
submerged in a deep tidal area, such as in Maine’s Western Passage.  All would be 
connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID.  The high-pressure 
HEPG fluid flow is transported 500-m to on-shore hydraulic generators.  HEPG is an 
environmentally friendly, biodegradable, water-miscible fluid.  Hydraulic adaptations to 
ORPC’s cross-flow turbines are also discussed. 
 
For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial 
piston pump can replace each set of top-mounted gear-generators.  The fluid is then pumped 
to a central, easily serviceable generator location.  Total hydraulic/electrical efficiency is 0.81 
at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities. 


